Module No. 197

Model: CFX-20, CFX-200

Module No. 197

Reading the display

[Daily alarm]

Stopwatch operation

A tone confirms start/stop operation. The tone sounds at 10-minute intervals. (Normal range: The stopwatch display is limited to 22 hours 59 minutes 59.99 seconds. Thereafter it can be reset and started again. The hour digits can be shown by pressing the [C] key."

[Daily alarm time]

Every time the [C] button is pressed in the alarm time mode, the alarm ON-mark (×) appears or disappears. When the alarm ON-mark is on, the buzzer sounds for 20 seconds at the preset time every day until cleared. To stop the buzzer while sounding, press the [C] button.

[Setting time]

1) Press [C] in the regular timekeeping mode to set hours and minutes.
2) Enter hours and minutes by pressing numeral buttons.
3) Example: Setting 10:58 PM Operation: 1058 PM (3 or 4-digit input)
4) Press [C] on a time signal.

[Setting calendar]

1) Press [C] in the regular timekeeping mode to set year, month and date.
2) Enter year, month and date by pressing numeral buttons.
3) Example: Setting June 14 (Tue.), 1983 Operation: 19830614 (6 or 8-digit input)
4) Press [C] to complete.

[Calculator operation]

\[
tan^{-1} : \text{Arc tangent} \quad \text{Obtains the angle.}
\]

\[
\text{log} \quad \text{Common logarithm} \quad \text{Obtains the common logarithm (base 10) of the displayed number.}
\]

\[
\text{In} \quad \text{Natural logarithm} \quad \text{Obtains the natural logarithm (base e) of the displayed number.}
\]

\[
\text{10} \quad \text{Antilogarithm} \quad \text{Calculates the 10th power of 10.}
\]

\[
\text{e} \quad \text{Exponential} \quad \text{Calculates the e-th power of e (2.7182818).}
\]

\[
\text{Power} \quad \text{Raises the base to the power.}
\]

\[
\text{Square root} \quad \text{Calculates the square root of the displayed number.}
\]

\[
\text{Log} \quad \text{Logarithm} \quad \text{Obtains the logarithm of the displayed number.}
\]

\[
\text{Polar coordinate} \quad \text{Converts the rectangular to the polar coordinate.}
\]

\[
\text{Angular conversion} \quad \text{Converts the angular conversion to the rectangular coordinate.}
\]

\[
\text{Sine} \quad \text{Sine} \quad \text{Obtains the sine of the displayed angle.}
\]

\[
\text{Cosine} \quad \text{Cosine} \quad \text{Obtains the cosine of the displayed angle.}
\]

\[
\text{Tangent} \quad \text{Tangent} \quad \text{Obtains the tangent of the displayed angle.}
\]

Conversion function

\[
\text{Ex. Conversion of 1 inch to centimeters.} \quad \text{(60) (cm) (1)} \quad \text{2.54 (cm)}
\]

\[
\text{Ex. Conversion 150 pounds to kilograms.} \quad \text{(150) (kg) (1)} \quad \text{68.04 (kg)}
\]

Application

If a car runs 8.5 kilometers per liter, how many miles will it run on 10 gallons of gas?

1. Conversion of 10 gallons to liters

\[
10 \times \frac{5}{4} = 12.5 \quad \text{(liters)}
\]

2. How many kilometers will it run on 37.854 liters of gas, if the performance is 8.5 km/l?

\[
\frac{8.5}{2} = 4.25 \quad \text{(liters)}
\]

\[
\text{Conversion table:} \quad \text{8.5 liters} \quad \text{37.854 (Bier)}
\]

\[
\text{(constant memories:} \quad \text{K1, K2, K3)}
\]

\[
\text{Ex. Memorize an optional figure of 345678910.}
\]

\[
\text{After memory, the optional figure is retrieved, if EXE button is pressed when the display shows (K1).}
\]